	estio	Answer	Marks	Gui
1	(i)	$a=1 / 2$	$\begin{aligned} & \text { B1 } \\ & \text { [1] } \end{aligned}$	allow $x=1 / 2$
	(ii)	$\begin{aligned} & y^{3}=\frac{x^{3}}{2 x-1} \\ & \Rightarrow \quad 3 y^{2} \frac{\mathrm{~d} y}{\mathrm{~d} x}=\frac{(2 x-1) 3 x^{2}-x^{3} .2}{(2 x-1)^{2}} \\ & \quad=\frac{6 x^{3}-3 x^{2}-2 x^{3}}{(2 x-1)^{2}}=\frac{4 x^{3}-3 x^{2}}{(2 x-1)^{2}} \\ & \Rightarrow \quad \frac{\mathrm{~d} y}{\mathrm{~d} x}=\frac{4 x^{3}-3 x^{2}}{3 y^{2}(2 x-1)^{2}} * \\ & \mathrm{~d} y / \mathrm{d} x=0 \text { when } 4 x^{3}-3 x^{2}=0 \\ & \Rightarrow x^{2}(4 x-3)=0, x=0 \text { or } 3 / 4 \\ & y^{3}=(3 / 4)^{3 / 1 / 2}=27 / 32, \\ & y=0.945(3 \mathrm{sf}) \end{aligned}$	B1 M1 A1 A1 A1 M1 A1 M1 A1 [9]	$3 y^{2} \mathrm{~d} y / \mathrm{d} x$ Quotient (or product) rule consistent with their derivatives; $(v \mathrm{~d} u+u \mathrm{~d} v) / v^{2} \mathrm{M} 0$ correct RHS expression - condone missing bracket NB AG penalise omission of bracket in QR at this stage if in addition $2 x-1=0$ giving $x=1 / 2$, A0 must use $x=3 / 4$; if $(0,0)$ given as an additional TP, then A0 can infer M1 from answer in range 0.94 to 0.95 inclusive

Question		Answer	Marks	Gui
1	(iii)	$u=2 x-1 \Rightarrow \mathrm{~d} u=2 \mathrm{~d} x$		
		$\int \frac{x}{\sqrt[3]{2 x-1}} \mathrm{~d} x=\int \frac{\frac{1}{2}(u+1)}{u^{1 / 3}} \frac{1}{2} \mathrm{~d} u$	M1	$\frac{\frac{1}{2}(u+1)}{u^{1 / 3}} \text { if missing brackets, withhold A1 }$
			M1	$\times 1 / 2 \mathrm{~d} u$ condone missing du here, but withhold A1
		$=\frac{1}{4} \int \frac{u+1}{u^{1 / 3}} \mathrm{~d} u=\frac{1}{4} \int\left(u^{2 / 3}+u^{-1 / 3}\right) \mathrm{d} u *$	A1	NB AG
		$\text { area }=\int_{1}^{45} \frac{x}{\sqrt[3]{2 x-1}} \mathrm{~d} x$	M1	correct integral and limits - may be inferred from a change of limits andP their attempt to integrate (their) $1 / 4\left(u^{2 / 3}+u^{-1 / 3}\right)$
		when $x=1, u=1$, when $x=4.5, u=8$ $=\frac{1}{4} \int_{1}^{8}\left(u^{2 / 3}+u^{-1 / 3}\right) \mathrm{d} u$	A1	$u=1,8$ (or substituting back to x 's and using 1 and 4.5)
		$=\frac{1}{4}\left[\frac{3}{5} u^{5 / 3}+\frac{3}{2} u^{2 / 3}\right]_{1}^{8}$	B1	$\left[\frac{3}{5} u^{5 / 3}+\frac{3}{2} u^{2 / 3}\right] \text { o.e. e.g. }\left[u^{5 / 3} /(5 / 3)+u^{2 / 3} /(2 / 3)\right]$
		$=\frac{1}{4}\left[\frac{96}{5}+6-\frac{3}{5}-\frac{3}{2}\right]$	A1	o.e. correct expression (may be inferred from a correct final answer)
		$=5 \frac{31}{40}=5.775 \text { or } \frac{231}{40}$	A1	cao, must be exact; mark final answer
			[8]	

2	(iii)	$u=x-2 \Rightarrow \mathrm{~d} u / \mathrm{d} x=1 \Rightarrow \mathrm{~d} u=\mathrm{d} x$ When $x=3, u=1$ when $x=11, u=9$ $\begin{aligned} & \Rightarrow \int_{3}^{11} \frac{x}{\sqrt{x-2}} \mathrm{~d} x=\int_{1}^{9} \frac{u+2}{u^{1 / 2}} \mathrm{~d} u \\ & =\int_{1}^{9}\left(u^{1 / 2}+2 u^{-1 / 2}\right) \mathrm{d} u \\ & =\left[\frac{2}{3} u^{3 / 2}+4 u^{1 / 2}\right]_{1}^{9} \\ & =(18+12)-(2 / 3+4) \\ & =25 \frac{1}{3} * \end{aligned}$ Area under $y=x$ is $1 / 2(3+11) \times 8=56$ Area $=($ area under $y=x)-($ area under curve) so required area $=56-25 \frac{1}{3}=30 \frac{2}{3}$	B1 B1 M1 A1 M1 A1cao B1 M1 A1cao [9]	or $\mathrm{d} x / \mathrm{d} u=1$ $\int \frac{u+2}{u^{1 / 2}}(\mathrm{~d} u)$ splitting their fraction (correctly) and $u / u^{1 / 2}=u^{1 / 2}($ or $\sqrt{ } u)$ $\left[\frac{2}{3} u^{3 / 2}+4 u^{1 / 2}\right] \text { (o.e) }$ substituting correct limits NB AG o.e. (e.g. $60.5-4.5$) soi from working 30.7 or better	No credit for integrating initial integral by parts. Condone $\mathrm{d} u=1$.Condone missing $\mathrm{d} u$'s in subsequent working. or integration by parts: $2 u^{1 / 2}(u+2)-\int 2 u^{1 / 2} \mathrm{~d} u$ (must be fully correct - condone missing bracket by parts: $\left[2 u^{1 / 2}(u+2)-4 u^{3 / 2} / 3\right]$ $F(9)-F(1)(u) \text { or } F(11)-F(3)(x)$ dep substitution and integration attempted must be trapezium area: $60.5-25 \frac{1}{3}$ is M0

Question		Answer	Marks	Guidance	
3	(i)	(A) $(0,6)$ and $(1,4$ (B) $-1,5)$ and $(0,4)$	$\begin{gathered} \text { B1B1 } \\ \text { B1B1 } \\ \text { [4] } \\ \hline \end{gathered}$	Condone P and Q incorrectly labelled (or unlabelled)	
	(ii)	$\begin{aligned} & \mathrm{f}^{\prime}(x)=\frac{(x+1) \cdot 2 x-\left(x^{2}+3\right) \cdot 1}{(x+1)^{2}} \\ & \mathrm{f}^{\prime}(x)=0 \Rightarrow 2 x(x+1)-\left(x^{2}+3\right)=0 \\ & \Rightarrow x^{2}+2 x-3=0 \\ & \Rightarrow(x-1)(x+3)=0 \\ & \Rightarrow x=1 \text { or } x=-3 \end{aligned}$ When $x=-3, y=12 /(-2)=-6$ so other TP is $(-3,-6)$	A1 M1 A1dep B1B1cao [6]	Quotient or product rule consistent with their derivatives, condone missing brackets correct expression their derivative $=0$ obtaining correct quadratic equation (soi) dep $1^{\text {st }}$ M1 but withhold if denominator also set to zero must be from correct work (but see note re quadratic)	PR: $\left(x^{2}+3\right)(-1)(x+1)^{-2}+2 x(x+1)^{-1}$ If formula stated correctly, allow one substitution error. condone missing brackets if subsequent working implies they are intended Some candidates get $x^{2}+2 x+3$, then realise this should be $x^{2}+2 x-3$, and correct back, but not for every occurrence. Treat this sympathetically. Must be supported, but - 3 could be verified by substitution into correct derivative
	(iii)	$\begin{aligned} \mathrm{f}(x-1) & =\frac{(x-1)^{2}+3}{x-1+1} \\ & =\frac{x^{2}-2 x+1+3}{x-1+1} \\ & =\frac{x^{2}-2 x+4}{x}=x-2+\frac{4}{x} * \end{aligned}$	M1 A1 A1 [3]	substituting $x-1$ for both x 's in f NB AG	allow 1 slip for M1
	(iv)	$\begin{aligned} & \int_{a}^{b}\left(x-2+\frac{4}{x}\right) \mathrm{d} x=\left[\frac{1}{2} x^{2}-2 x+4 \ln x\right]_{a}^{b} \\ & =\left(\frac{1}{2} b^{2}-2 b+4 \ln b\right)-\left(\frac{1}{2} a^{2}-2 a+4 \ln a\right) \end{aligned}$ Area is $\int_{0}^{1} \mathrm{f}(x) \mathrm{d} x$ So taking $a=1$ and $b=2$ $\begin{aligned} \text { area }= & (2-4+4 \ln 2)-(1 / 2-2+4 \ln 1) \\ & =4 \ln 2-1 / 2 \end{aligned}$	$\begin{gathered} \text { B1 } \\ \text { M1 } \\ \text { A1 } \\ \\ \text { M1 } \\ \text { A1 cao } \\ \text { [5] } \\ \hline \end{gathered}$	$\left[\frac{1}{2} x^{2}-2 x+4 \ln x\right]$ $\mathrm{F}(b)-\mathrm{F}(a)$ condone missing brackets oe (mark final answer) must be simplified with $\ln 1=0$	F must show evidence of integration of at least one term or $\mathrm{f}(x)=x+1-2+4 /(x+1)$ $\begin{aligned} & A=\int_{0}^{1} \mathrm{f}(x) \mathrm{d} x=\left[\frac{1}{2} x^{2}-x+4 \ln (1+x)\right]_{0}^{1} \mathrm{M} 1 \\ & =1 / 2-1+4 \ln 2=4 \ln 2-1 / 2 \mathrm{~A} 1 \end{aligned}$

PhysicsAndMathsTutor.com

$\text { 4(i) } \begin{aligned} \frac{\mathrm{d} y}{\mathrm{~d} x} & =\frac{x^{2} \cdot \frac{1}{x}-\ln x \cdot 2 x}{x^{4}} \\ & =\frac{x-2 x \ln x}{x^{4}} \\ & =\frac{1-2 \ln x}{x^{3}} \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { B1 } \\ & \text { A1 } \\ & \\ & \text { A1 } \\ & {[4]} \end{aligned}$	quotient rule with $u=\ln x$ and $v=x^{2}$ $\mathrm{d} / \mathrm{d} x(\ln x)=1 / x$ soi correct expression (o.e.) o.e. cao, mark final answer, but must have divided top and bottom by x	Consistent with their derivatives. $u \mathrm{~d} v \pm v \mathrm{~d} u$ in the quotient rule is M0 Condone $\ln x .2 x=\ln 2 x^{2}$ for this A1 (provided $\ln x .2 x$ is shown) e. $\frac{1}{x^{3}}-\frac{2 \ln x}{x^{3}}, x^{-3}-2 x^{-3} \ln x$
$\begin{aligned} \text { or } \quad & \frac{\mathrm{d} y}{\mathrm{~d} x}=-2 x^{-3} \ln x+x^{-2}\left(\frac{1}{x}\right) \\ & =-2 x^{-3} \ln x+x^{-3} \end{aligned}$	$\begin{aligned} & \mathrm{M} 1 \\ & \text { B1 } \\ & \text { A1 } \\ & \text { A1 } \\ & {[4]} \end{aligned}$	product rule with $u=x^{-2}$ and $v=\ln x$ $\mathrm{d} / \mathrm{d} x(\ln x)=1 / x$ soi correct expression o.e. cao, mark final answer, must simplify the $x^{-2} .(1 / x)$ term.	or vice-versa
$\text { (ii) } \begin{aligned} & \int \frac{\ln x}{x^{2}} \mathrm{~d} x \\ & \quad \mathrm{~d} v / \mathrm{d} x=1 / x^{2}, v=-x^{-1} \\ &=-\frac{1}{x} \ln x+\int_{x}^{1} \cdot \frac{1}{x} \mathrm{~d} x \\ &=-\frac{1}{x} \ln x+\int \frac{1}{x^{2}} \mathrm{~d} x \\ &=-\frac{1}{x} \ln x-\frac{1}{x}+c \\ &=-\frac{1}{x}(\ln x+1)+c^{*} \end{aligned}$	M1 A1 A1 A1 [4]	Integration by parts with $u=\ln x, \mathrm{~d} u / \mathrm{d} x=1 / x, \mathrm{~d} v / \mathrm{d} x=1 / x^{2}, v=-x^{-1}$ must be correct, condone $+c$ condone missing c NB AG must have c shown in final answer	Must be correct at this stage . Need to see $1 / x^{2}$

