Question		n	Answer	Marks	Gui	
1	(i)		$a = \frac{1}{2}$	B1	allow $x = \frac{1}{2}$	
				[1]		
	(ii)		$y^3 = \frac{x^3}{2x - 1}$			
			$\rightarrow 2x^2 dy (2x-1)3x^2 - x^3.2$	B1	$3y^2 dy/dx$	
			$\Rightarrow 5y \frac{dx}{dx} = \frac{(2x-1)^2}{(2x-1)^2}$	M1	Quotient (or product) rule consistent with their derivatives; $(v du + udv)/v^2 M0$	
				A1	correct RHS expression – condone missing bracket	
			$=\frac{6x^3-3x^2-2x^3}{(2x-1)^2}=\frac{4x^3-3x^2}{(2x-1)^2}$	A1		
			$\Rightarrow \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{4x^3 - 3x^2}{3y^2(2x-1)^2} *$	A1	NB AG penalise omission of bracket in QR at this stage	
			$dy/dx = 0$ when $4x^3 - 3x^2 = 0$	M1		
			$\Rightarrow x^2(4x-3) = 0, x = 0 \text{ or } \frac{3}{4}$	A1	if in addition $2x - 1 = 0$ giving $x = \frac{1}{2}$, A0	
			$y^3 = (3/4)^3 / \frac{1}{2} = 27/32,$	M1	must use $x = \frac{3}{4}$; if (0, 0) given as an additional TP, then A0	
			y = 0.945 (3sf)	A1	can infer M1 from answer in range 0.94 to 0.95 inclusive	
				[9]		

Question		n	Answer	Marks	Gui	
1	(iii)		$u = 2x - 1 \Longrightarrow \mathrm{d}u = 2\mathrm{d}x$			
			$\int \frac{x}{\sqrt[3]{2x-1}} dx = \int \frac{\frac{1}{2}(u+1)}{u^{1/3}} \frac{1}{2} du$	M1	$\frac{\frac{1}{2}(u+1)}{u^{1/3}}$ if missing brackets, withhold A1	
			0	M1	$\times \frac{1}{2} du$ condone missing du here, but withhold A1	
			$=\frac{1}{4}\int \frac{u+1}{u^{1/3}} \mathrm{d}u = \frac{1}{4}\int (u^{2/3} + u^{-1/3}) \mathrm{d}u \ *$	A1	NB AG	
			area = $\int_{1}^{45} \frac{x}{\sqrt[3]{2x-1}} dx$	M1	correct integral and limits – may be inferred from a change of limits and P their attempt to integrate (their) $\frac{1}{4} (u^{2/3} + u^{-1/3})$	
			when $x = 1$, $u = 1$, when $x = 4.5$, $u = 8$	A1	u = 1, 8 (or substituting back to x's and using 1 and 4.5)	
			$=\frac{1}{4}\int_{1}^{8}(u^{2/3}+u^{-1/3})\mathrm{d}u$			
			$=\frac{1}{4}\left[\frac{3}{5}u^{5/3}+\frac{3}{2}u^{2/3}\right]_{1}^{8}$	B1	$\left[\frac{3}{5}u^{5/3} + \frac{3}{2}u^{2/3}\right]$ o.e. e.g. $\left[u^{5/3}/(5/3) + u^{2/3}/(2/3)\right]$	
			$= \frac{1}{4} \left[\frac{96}{5} + 6 - \frac{3}{5} - \frac{3}{2} \right]$	A1	o.e. correct expression (may be inferred from a correct final answer)	
			$= 5\frac{31}{40} = 5.775 \text{ or } \frac{231}{40}$	A1	cao, must be exact; mark final answer	
				[8]		

2	(i)	When $x = 3$, $y = 3/\sqrt{(3 - 2)} = 3$ So P is (3, 3) which lies on $y = x$	M1 A1 [2]	substituting $x = 3$ (both x's) y = 3 and completion ('3 = 3' is enough)	or $x = x/\sqrt{(x-2)}$ M1 $\Rightarrow x = 3$ A1(by solving or verifying)
	(ii)	$\frac{dy}{dx} = \frac{\sqrt{x-2} \cdot 1 - x \cdot \frac{1}{2} \cdot (x-2)^{-1/2}}{x-2}$	M1 A1	Quotient or product rule PR: $-\frac{1}{2}x(x-2)^{-3/2} + (x-2)^{-1/2}$ correct expression	If correct formula stated, allow one error; otherwise QR must be on correct u and v , with numerator consistent with their derivatives and denominator correct initially
		$= \frac{x^{2} - 2}{(x-2)^{3/2}} = \frac{2^{x-2}}{(x-2)^{3/2}}$ $= \frac{x-4}{2(x-2)^{3/2}} *$	M1 A1	× top and bottom by $\sqrt{(x-2)}$ o.e. e.g. taking out factor of $(x-2)^{-3/2}$ NB AG	allow ft on correct equivalent algebra from their incorrect expression
		When $x = 3$, $dy/dx = -\frac{1}{2} \times 1^{3/2}$ = $-\frac{1}{2}$	M1 A1	substituting $x = 3$	
		This gradient would be -1 if curve were symmetrical about $y = x$	A1cao [7]	or an equivalent valid argument	

-		1				
2	(iii)		$u = x - 2 \Longrightarrow du/dx = 1 \Longrightarrow du = dx$	B1	or $dx/du = 1$	No credit for integrating initial integral by
			When $x = 3$, $u = 1$ when $x = 11$, $u = 9$ $\Rightarrow \int_{0}^{11} \frac{x}{\sqrt{1-x}} dx = \int_{0}^{9} \frac{u+2}{1/2} du$	B1	$\int \frac{u+2}{u^{1/2}} (\mathrm{d} u)$	parts. Condone $du = 1$.Condone missing du 's in subsequent working.
			$= \int_{1}^{9} (u^{1/2} + 2u^{-1/2}) du$	M1	splitting their fraction (correctly) and $u/u^{1/2} = u^{1/2}$ (or \sqrt{u})	or integration by parts: $2u^{1/2}(u+2) - \int 2u^{1/2} du$ (must be fully correct – condone missing
			$= \left[\frac{2}{3}u^{3/2} + 4u^{1/2}\right]_{1}^{9}$	A1	$\left[\frac{2}{3}u^{3/2} + 4u^{1/2}\right]$ (o.e)	bracket by parts: $[2u^{1/2}(u+2) - 4u^{3/2}/3]$
			=(18+12)-(2/3+4)	M1	substituting correct limits	F(9) - F(1)(u) or $F(11) - F(3)(x)$
			$=25\frac{1}{3}^{*}$	A1cao	NB AG	dep substitution and integration attempted
			Area under $y = x$ is $\frac{1}{2}(3 + 11) \times 8 = 56$ Area = (area under $y = x$) – (area under curve)	B1 M1	o.e. (e.g. 60.5 – 4.5) soi from working	must be trapezium area: $60.5 - 25\frac{1}{2}$ is M0
			so required area = $56 - 25\frac{1}{3} = 30\frac{2}{3}$	A1cao [9]	30.7 or better	3

Question		Answer	Marks	Guidance	
3	(i)	(A) (0, 6) and (1, 4	B1B1	Condone P and Q incorrectly labelled (or	
		(B) -1, 5) and $(0, 4)$		unlabelled)	
	(ii)	$f'(x) = \frac{(x+1) \cdot 2x - (x^2 + 3) \cdot 1}{(x+1)^2}$ $f'(x) = 0 \Rightarrow 2x (x+1) - (x^2 + 3) = 0$ $\Rightarrow x^2 + 2x - 3 = 0$ $\Rightarrow (x-1)(x+3) = 0$ $\Rightarrow x = 1 \text{ or } x = -2$	A1 M1 A1 A1dep	Quotient or product rule consistent with their derivatives, condone missing brackets correct expression their derivative = 0 obtaining correct quadratic equation (soi) dep 1^{st} M1 but withhold if denominator also	PR: $(x^2+3)(-1)(x+1)^{-2} + 2x(x+1)^{-1}$ If formula stated correctly, allow one substitution error. condone missing brackets if subsequent working implies they are intended Some candidates get $x^2 + 2x + 3$, then realise this should be $x^2 + 2x - 3$, and
		When $x = -3$, $y = \frac{12}{(-2)} = -6$ so other TP is $(-3, -6)$	B1B1cao [6]	set to zero must be from correct work (but see note re quadratic)	correct back, but not for every occurrence. Treat this sympathetically. Must be supported, but -3 could be verified by substitution into correct derivative
	(iii)	$f(x-1) = \frac{(x-1)^2 + 3}{x-1+1}$ $= \frac{x^2 - 2x + 1 + 3}{x-1+1}$	M1	substituting $x - 1$ for both x's in f	allow 1 slip for M1
		$=\frac{x-1+1}{x} = x-2+\frac{4}{x} *$	A1 [3]	NB AG	
	(iv)	$\int_{a}^{b} (x-2+\frac{4}{x}) dx = \left[\frac{1}{2}x^{2}-2x+4\ln x\right]_{a}^{b}$ $= \left(\frac{1}{2}b^{2}-2b+4\ln b\right) - \left(\frac{1}{2}a^{2}-2a+4\ln a\right)$	B1 M1 A1	$\left[\frac{1}{2}x^2 - 2x + 4\ln x\right]$ F(b) - F(a) condone missing brackets oe (mark final answer)	F must show evidence of integration of at least one term
		Area is $\int_{0}^{1} f(x) dx$ So taking $a = 1$ and $b = 2$ area = $(2 - 4 + 4\ln 2) - (\frac{1}{2} - 2 + 4\ln 1)$ = $4 \ln 2 - \frac{1}{2}$	M1 A1 cao [5]	must be simplified with $\ln 1 = 0$	or $f(x) = x + 1 - 2 + 4/(x+1)$ $A = \int_0^1 f(x) dx = \left[\frac{1}{2}x^2 - x + 4\ln(1+x)\right]_0^1 M1$ $= \frac{1}{2} - 1 + 4\ln 2 = 4\ln 2 - \frac{1}{2} A1$

4(i)	$\frac{\mathrm{d} y}{\mathrm{d} x} = \frac{x^2 \cdot \frac{1}{x} - \ln x \cdot 2x}{x^4}$ $= \frac{x - 2x \ln x}{x^4}$ $= \frac{1 - 2 \ln x}{x^3}$	M1 B1 A1 [4]	quotient rule with $u = \ln x$ and $v = x^2$ d/dx (ln x) = 1/x soi correct expression (o.e.) o.e. cao, mark final answer, but must have divided top and bottom by x	Consistent with their derivatives. $udv \pm vdu$ in the quotient rule is M0 Condone $\ln x.2x = \ln 2x^2$ for this A1 (provided $\ln x.2x$ is shown) e. $\frac{1}{x^3} - \frac{2\ln x}{x^3}$, $x^{-3} - 2x^{-3}\ln x$
or	$\frac{d y}{d x} = -2x^{-3} \ln x + x^{-2} \left(\frac{1}{x}\right)$ $= -2x^{-3} \ln x + x^{-3}$	M1 B1 A1 A1 [4]	product rule with $u = x^{-2}$ and $v = \ln x$ d/dx (ln x) = 1/x soi correct expression o.e. cao, mark final answer, must simplify the x^{-2} .(1/x) term.	or vice-versa
(ii)	$\int \frac{\ln x}{x^2} dx \text{let } u = \ln x, du/dx = 1/x$ $dv/dx = 1/x^2, v = -x^{-1}$ $= -\frac{1}{x}\ln x + \int \frac{1}{x} \cdot \frac{1}{x} dx$ $= -\frac{1}{x}\ln x + \int \frac{1}{x^2} dx$	M1 A1	Integration by parts with $u = \ln x$, $du/dx = 1/x$, $dv/dx = 1/x^2$, $v = -x^{-1}$ must be correct, condone + c	Must be correct at this stage . Need to see $1/x^2$
	$x = -\frac{1}{x} \ln x - \frac{1}{x} + c$ = $-\frac{1}{x} (\ln x + 1) + c^{*}$	A1 A1 [4]	condone missing c NB AG must have c shown in final answer	